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The viscous dynamic permeability of some fractal-like channels is studied. For our particular class
of geometries, the ratio of the pore surface area-to-volume tends to � �but has a finite cutoff�, and
the universal scaling of the dynamic permeability, k���, needs modification. We performed accurate
numerical computations of k��� for channels characterized by deterministic fractal wall surfaces, for
a broad range of fractal dimensions. The pertinent scaling model for k��� introduces explicitly the
fractal dimension of the wall surface for a range of frequencies across the transition between viscous
and inertia dominated regimes. The new model provides excellent agreement with our numerical
simulations. © 2010 American Institute of Physics. �doi:10.1063/1.3407659�

I. INTRODUCTION

The dynamic interaction between a flowing fluid and the
solid constituents of a porous medium is a key issue control-
ling wave propagation in geological,1–3 biological,4,5 and en-
gineered systems.6,7 The general theory of wave propagation
in porous media was developed in Refs. 8–12. In these the-
oretical developments, it is invariably assumed that it is al-
ways possible to identify two separate spatial scales, denoted
by x �the macroscopic, “slow” scale�, and by y �the micro-
scopic, “fast” scale�. When the characteristic length scale of
the pores, Ly, is significantly smaller than the characteristic
length of a macroscopic sample of the porous medium, Lx,
i.e., �=Ly /Lx�1, it is possible to uncouple elastic motion of
solid matrix from oscillations of pore fluid,13 and viscous
from thermal dissipation.14 In this work, we consider an iso-
thermal system and assume that the driving force is a small-
amplitude harmonic macroscopic pressure gradient ��p� os-
cillating at a frequency �. The operator � · � represents a
spatial average of microscopic quantities over the fluid part
of a porous medium with porosity, �. Assuming small-
amplitude flow perturbations, it is possible to write all the

quantities of interest in the form f�r , t�= f̂�r ,��exp�i�t�.
Under such assumptions, a linear relationship exists between
�v� and ��p�, the coefficient of proportionality being a
complex-valued function k���, called the viscous dynamic
permeability.

Despite the great variability of the pore microgeometries
considered in the literature,15–18 it is generally found, both
experimentally and numerically, that the normalized dynamic

permeability k̃��� matches reasonably well a scaling
function19,20 which depends on a characteristic frequency �c

and a similarity parameter, M. Remarkably, M is usually
found to be almost configuration independent and close to
unity, as long as the pore surface is locally smooth.19,21,22

Experimental observations, however, indicate that pore
roughness may exhibit self-similar characteristics over a
wide range of length scales. Experimental studies based on

different experimental techniques23–25 �e.g., scanning
electron microscopy, small-angle neutron scattering, nitrogen
adsorption isotherm� demonstrated that, for instance, the
pore space of sandstones and shales is approximately fractal
over length scales ranging from 10 Å to 100 �m, with cor-
responding fractal dimensions varying between 2.57 and
2.87. Other experimental studies26,27 have proven that
fractured-rock wall surfaces also display fractal and multi-
fractal properties over a range of scales between 0.1 �m to
1 cm.

Numerical investigations of the effects of fractal walls
on the dynamic permeability have been the subject of previ-
ous works.28–30 In this study, we explore the effects of such
self-similar rough surfaces on the scaling of the dynamic
permeability. Other studies considered the problem of the
static �frequency independent� flow in fractal trees.31,32

We present accurate numerical simulations of longitudi-
nal frequency-dependent Stokes flow in channels with fractal
pore-surface structure, similar to the ones considered by
Pozrikidis.30 The effect of self-similar sharp edges on the
flow streamlines �transverse flow� will be considered sepa-
rately elsewhere, as the corrections to the universal scaling
associated with this type of singularity21,22 add-up in a non-
trivial way to the effects which are the main object of study
here.

In Sec. II we develop the theoretical basis of our analy-
sis, which is followed in Sec. III by a review of some basic
concepts of fractal geometry. Section IV illustrates the nu-
merical methods and the dynamic-response solutions for a
broad range of fractal dimension, whereas Sec. V presents
the modified scaling functions that are used to model the
numerical solutions. Finally, conclusions and open problems
are summarized in Sec. VI.

II. THEORY

A. Homogenization of the flow equations

The linearized fluid motion is fully characterized at the
microscopic level by small perturbations to state of rest of
the fluid velocity v̂�r ,��, and fluid pressure p̂�r ,��. Express-
ing the pressure in units of Lx�

2 /�Ly
3, and the frequency � ina�Electronic mail: acortis@lbl.gov.
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units of 	 /Ly
2, the governing flow equations are the �nondi-

mensional� frequency-dependent Stokes equations:13,14,16

i�v̂ = − �−1 � p̂ + �2v̂ , �1a�

� · v̂ = 0, �1b�

v̂ = 0 on Afs, �1c�

where Afs is the fluid-solid surface.
Homogenization of these flow equations requires ex-

pressing v̂ and p̂, and the differential operator � as a function
of the slow scale x and the fast scale y �see
Sanchez–Palencia�,33

v̂�x,y� = v̂0�x,y� + �v̂1�x,y� + �2v̂2�x,y� + ¯ , �2a�

p̂�x,y� = p̂0�x,y� + �p̂1�x,y� + �2p̂2�x,y� + ¯ , �2b�

� = ��x + �y . �2c�

Collecting the terms with the same power in � leads to a
hierarchy of equations:

�yp̂0 = 0, �3a�

i�v̂0 − �y
2v̂0 + �yp̂1 = − �xp̂0, �3b�

�y · v̂0 = 0, �3c�

v̂�Afs
= 0. �3d�

Equation �3a� indicates that p̂0 is a macroscopic variable,
whereas Eq. �3b� shows that the fluid is incompressible at the
microscopic scale. Since the fields p̂1�x ,y� and v̂0�x ,y� are
the solutions of linear systems, they can be formally ex-
pressed by means of linear operators acting on the macro-
scopic source term −�xp̂0:

− p̂1 = P��x,y� · �xp̂0, �4a�

− v̂0 = V��x,y� · �xp̂0. �4b�

The linear operators P��x ,y� and V��x ,y� are vector and
second rank tensor operators, respectively. Substitution of
Eq. �4� into Eq. �3� yields the following set of partial differ-
ential equations:

i�V� − �y
2V� + �yP� = I , �5a�

�y · V� = 0, �5b�

V��Afs
= 0, �5c�

where I is a second rank identity tensor.

B. Macroscopic flow equations

Averaging of Eq. �4b� over the �fast� y-scale leads to the
macroscopic equation

�v̂0� = −
k���

�
· �xp̂0, �6�

where

k��� = ��V��x,y�� , �7�

which is an extension of the classical Darcy law in the fre-
quency domain. Written in dimensional form, Eq. �6� reads

�v̂� = −
k���
��

� �p̂� . �8�

The low frequency limit of the real part of the dynamic per-
meability, k0=lim�→0 Re�k����, is the static Darcy perme-
ability which can be calculated as k0=��V0�Ly

2, where V0 is
the solution of Eq. �5� for a frequency �=0. To study the
high frequency limit of Eq. �8�, it is convenient to rewrite it
in terms of Newton’s law, by introducing a dynamic tortuos-
ity, 
���, as follows:

�
���i��v̂� = − ��p̂� . �9�

This formula results from Brown’s work,34 showing the con-
nection between electrical and inertial properties.

The limit of 
��� for �→+� is called the tortuosity of
the porous medium, 
�, and equals 
�= �V�

2 � / �V��2. The ve-
locity field V� is the high-frequency limiting solution of Eq.
�5� and can be expressed as the gradient of a harmonic po-
tential field �, i.e., V�=�� and �2�=0 with homogeneous
Neumann boundary conditions at the fluid-solid interface. As
a first order approximation, the macroscopic law describing
the fluid flow in the high frequency regime can be expressed
via Newton’s law of motion:

i��
��v̂� = − ��p̂� . �10�

The low frequency limit of the real part of 
���,

0=lim�→0 Re�
����, is called static viscous tortuosity, and
can be computed as35–37 
0= �V0

2� / �V0�2, where V0 is the so-
lution of Eq. �5� at �=0. Substituting the Poiseuille flow
solution into the above equation, we find that for a straight
tube �three-dimensional flow� 
0=4 /3, while for a set of
parallel planes �two-dimensional flow� 
0=6 /5. From Eqs.
�8� and �9�, we derive the relation between the dynamic pa-
rameters k��� and 
���,


���

�

=
k0

k���
�c

i�
, �11�

where �̃=� /�c, and �c=�� /
�k0� is the characteristic fre-
quency for the transition between the viscous and the inertia
dominated regimes. For smooth pore-wall surfaces, the
asymptotic high-frequency behavior for 
��� is19


��� � 
�	1 + �1 − i�
����



 , �12�

where
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���� = �2�/���1/2 �13�

is the viscous boundary layer thickness, which can take on
arbitrarily small values as frequency increases. The  param-
eter is a characteristic viscous length scale defined as a
velocity-weighted pore volume �Vf�-to-pore surface �Afs�
ratio,

 = 2
�Vf

V�
2 dV

�Afs
V�

2 dA
, �14�

and is therefore a purely geometrical parameter. The bound-
ary layer thickness, ����, in Eq. �13� identifies a boundary
layer region where, as a consequence of the no-slip boundary
condition, energy is dissipated by viscous forces, whereas in
the complementary region, the fluid flow becomes inviscid
�inertial response only�.

The high-frequency asymptotic behavior of k��� is given
by

k���
k0

� − i�̃−1 +
1

2
�1 + i��M�̃−3/2, �15�

where

M =
8k0
�

�2 �16�

is a nondimensional scaling parameter of order one.19,22 The
M parameter enters also the higher-order terms of the low-
frequency asymptotic behavior of 
���,


��� � 
0 − i
��̃−1 −
2

M

�
� − 
0�3


�
2 �̃� . �17�

Finally, we note that the drag force, f���, is proportional to
the time derivative of the added mass20 �
��� /
�−1�:

f��� = − i�̃
�
���

�

− 1� . �18�

For smooth pore walls, the dynamic permeability �and
consequently the dynamic tortuosity, and the complex-valued
drag force� exhibits a universal scaling behavior. The univer-
sal scaling can be modeled in terms of a function, F���,
which is defined in such a way to satisfy both the low- and
high-frequency theoretical limits, and to be exact in the lim-
iting case of 2D slit flow. The expression for the dynamic
permeability thus reads19,20

k���
k0

= �F��� + i�̃�−1, �19�

where

F��� = 1 −
3

10

M

a
1 − i�̃

1

3
b

tanh�z�
z − tanh�z�� , �20�

and

a =

0 − 1


�

, �21�

b = 50
a2

M
, �22�

z = �bi�̃ . �23�

The parameter z scales like the inverse of the thickness of the
boundary layer, z��−1; we will use this fact to generalize
the scaling functions to the case of fractures with fractal
surfaces.

III. FRACTAL WALL SURFACES

Let us consider rock fractures delimited by two rough
surface walls symmetric with respect to a horizontal plane,
and analyze the effects that asperities �at many scales, down
to some premicroscopic cutoff� have on frequency-dependent
flow. We assume that the fracture is periodic in the plane that
contains the fracture aperture, and that there is no geometry
variation in the direction perpendicular to this plane. More-
over, we assume that the flow direction is also directed per-
pendicularly to the fracture aperture plane. This flow con-
figuration can then be studied there by means of a two-
dimensional model in which the only pertinent component of
the velocity vector is along the longitudinal direction x3, i.e.,
vx1

=vx2
=0, where xi, with i=1,2 ,3 represent the three spa-

tial coordinates in a rectangular �orthogonal� coordinate sys-
tem. The longitudinal component vx3

is a function only of the
two spatial coordinates of the longitudinal cross section,
x1 ,x2, hence �vx1

/�x3=0, from which it follows that the con-
dition on the divergence of the flow is automatically satis-
fied. Moreover, a pressure gradient exists only along the lon-
gitudinal direction x3, from which it follows that the Stokes
problem reduces to a Poisson problem in the scalar variable
vx3

. The corresponding closure problem reduces thus to find-
ing V�

�3�, which is the x3 component of the closure problem
vector V�= �V�

�1� ,V�
�2� ,V�

�3��, satisfying

i�V�
�3� − �y

2V�
�3� = 1, and V�

�3��Afs
= 0. �24�

For such a geometry, 
��1, i.e., there is no tortuosity along
the flow streamlines. Furthermore, the expression for the
characteristic viscous length  reduces to14

 = 2
Vf

Afs
. �25�

Before analyzing the precise geometry of these surfaces,
it may be useful to recall a few definitions from Euclidean
and fractal geometry. The Euclidean measure of a d-sphere,38

with d�N, is equal to bd=�d/2 /��d /2+1�. Rescaling a
d-sphere by a factor � results in a measure proportional to
�d. The exponent of the scaling factor in the rescaled mea-
sure is called the dimension of the object. Fractal geometrical
objects generalize these notions by allowing noninteger di-
mensions. This type of scaling is commonly observed in
many natural phenomena. Natural fracture-wall surfaces, for
instance, present asperities at different scales, and there is
ample consensus in the rock mechanics literature that rock
surfaces are characterized by noninteger dimensions over a
broad range of spatial scales, typically from 10−5–101 m.
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Single fractures wall surfaces are fractal therefore in a sto-
chastic sense.

In this work, we will consider only fracture-wall sur-
faces defined as the Cartesian product of a deterministic
fractal K and a one-dimensional segment of arbitrary length.
The dimension of the fractal curve, 1�d�2, characterizes
completely the dimension of the fractal curve. The determin-
istic fractal considered in this study is a Köch fractal curve.39

The prototypical Köch curve is generated by dividing the
segment �0,1� into three smaller segments of equal length
l1=1 /3, and replacing the central segment with two seg-
ments of length l1 to form an equilateral triangle. This con-
struction is then repeated over the resulting segments and
iterated indefinitely. The resulting curve, K, is autosimilar,
i.e., admits a partition �Ki� , i=1, . . . ,n, such that every Ki is
homothetical �identical when rescaled� to K. After k itera-
tions the Euclidean length of the curve built over the unit
segment equals Lk= �4 /3�k, a value which tends to � for k
→�. The area of the corresponding fracture-wall surface
tends, therefore, also to �.

Let Ld�K� be the d-dimensional measure of K. There
exists at most one value of d for which 0�Ld�K��� and we
indicate this number as d, the Hausdorff dimension39 of K.
The measure of the Köch curve K�0,1� constructed on the unit
segment L=1 �m�, is

Ld�K�0,1�� = bd�
i

4n

�diam�Ki�/2�d

= bd
1

2d 4

3d�n

= bd
1

2d = 0.953 097�mlog 4/log 3� ,

�26�

a value that does not depend on the iteration n in the con-
struction of the fractal curve.

Real world materials, however, do not of course exhibit
such ideal autosimilar behavior at all scales of observation.
Rather, they show upper and lower cutoff lengths at which
the autosimilar property breaks off. Below the lower cutoff
length, and above the upper cutoff length, the geometry of
the object is Euclidean, i.e., measures scale with integer ex-
ponents. Any approximation of such a real world object will
entail a finite number n of iterations of the homothetical
construction. The cutoff length scale, �, equals the smallest
of the geometric details of the fracture surface.

In channels with fractal pore-fluid surfaces Afs, the clas-
sical scaling in Eq. �20� does not hold anymore because
�2Vf /Afs→0, and consequently M→�. If the yardstick
of our fractal analysis is represented by the thickness of the
boundary layer, �, we expect that the measure of the bound-
ary layer itself will roughly follow the scaling of the fractal
surface. At low frequencies, the boundary layer will be suf-
ficiently separated from the actual fractal surface and thus
will be smooth, with a length roughly proportional to
L1=4 /3 �m�. At very high frequencies, when ���, the fin-
est detail of the surface for a given maximum number of
iterations n, the measure of the boundary layer will scale
again as an Euclidean geometrical object. For the classical
Köch curve of dimension d=log 4 / log 3, the Euclidean

length of the boundary layer at such high frequencies will be
thus roughly proportional to Ln= �4 /3�n �m�, which for large
n is a large number, but not infinite. There must exist, there-
fore, an intermediate range of frequencies over which the
length of the boundary layer scales with a noninteger expo-
nent and takes values of a length to a noninteger power.
In this range of frequencies, the scaling of the boundary layer
thickness must be different from the classical expression
�� �̃−1/2.

To fix ideas, consider a fracture with permeability
k0=1.59�10−8 m2, tortuosity 
�=1, fractal dimension
d�1.27, and water as the oscillating fluid �at a temperature
T=25 °C, water density �=997 kg m−3, and viscosity
�=8.90�10−4 Pa s�. The corresponding viscous-inertia
transition frequency is �c=63 Hz. A range of nondimen-
sional frequencies between 10−2��̃�104 corresponds
therefore to dimensional frequencies roughly in the range
between 1 Hz and 0.1 GHz. As will be shown in our numeri-
cal computations section, the dimension of the corresponding
computational cell is of the order of 1 mm. For a maximum
number of iterations n=5, the length of the smallest detail of
the surface is roughly ���1 mm /4n��1 �m, a value
which is within the range of previous experimental determi-
nations of the fractal dimensions for single fractures surface
walls.

Pozrikidis30 also introduces another scaling exponent for
fractal geometries, d�, the gain in wall length with increasing
refinement. The values of d� corresponding to the fractal
dimensions considered in this study can be found in Table I.

It becomes clear therefore that the scaling expression for
the viscous boundary layer presented in Eq. �13� and the
associated scaling models presented in Sec. II B need to be
modified. The numerical simulations of the dynamic perme-
ability presented in the next section will determine the ana-
lytical expression of the scaling models appropriate for frac-
tal surface channels.

IV. NUMERICAL SIMULATIONS

In this section, we present a series of numerical solutions
of the closure problem �24� for a 2D cross section with frac-
tal walls defined by Köch-like curves for a range of fractal
dimension. Kostek et al.29 and Pozrikidis30 studied longitu-
dinal and transverse oscillating flow for such geometries.
The fractal-walls profiles in our study �see Fig. 1� were gen-
erated by means of a simple L-system algorithm.40 We al-
lowed the fractal dimension d of the surface to vary in the
range 1.16�d�1.49. We constructed two sets of geom-
etries, for two different values of the maximum number of
iterations in the fractal construction, n=4 and n=5. A peri-
odic repetition of a unit cell of length 1 and width 1 is as-
sumed along the transverse direction. We exploit the reflec-
tion symmetry of unit cell along the middle plane. Equation
�24� is solved numerically for different values of the nondi-
mensional frequency �̃ by means of a finite element numeri-
cal scheme; a typical mesh is shown in Fig. 2. From the
numerical solutions of Eq. �24�, we calculate the dynamic
permeability, k���, as a function of frequency, and the scal-
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ing functions coefficients, 
0, 
�, and . See Tables I and II
for a summary of the macroscopic parameters for the various
simulations.

In Fig. 3, we plot the evolution of the value of the Darcy
�static� permeability, k0 as a function of the porosity for a
range of maximum iterations in the fractal geometry con-
struction, n. It is observed that, in this range of porosity
variation, the permeability follows closely a Kozeny–
Carman relationship, k0 /�=c1�1 /180���2 / �1−��2�+c2. The
linear regression lines are shown in red, and the correspond-
ing coefficients are listed in Table III. As the value of the
permeability remains bounded, and the value of →0, it
follows that the scaling parameter M→�.

In Fig. 4, we present the evolution of the velocity field
for different values of the frequency. At small frequencies,
the phase of the velocity field, ��V�

�3��, �right hand side pan-
els� is negligibly small, but the shape of the boundary layer
can be appreciated from the plot of the absolute value of the
velocity itself. At intermediate frequencies, we see that the
boundary layer follows closely the profile of the fluid-solid
interface, and as such exhibits the same fractal dimension
scaling. At much higher frequencies, the boundary layer is
indistinguishable from the bounding surface itself, and the

phase of the velocity field is equal to −� /2 throughout the
fluid space, indicating an inertia-dominated flow regime. For
these frequencies, the thickness of the boundary layer is
much smaller than the smallest details of the pore-fluid sur-
face, �; hence, the boundary layer thickness scales according
to Eq. �13�. This result can be better appreciated in Fig. 5,
which shows a contour plot of the boundary thickness as a
function of the frequency. The precise position of the bound-
ary layer is largely a matter of convention in the choice of
the threshold. In this work, we define the boundary layer as
the loci of the points for which ��V�

�3��=−0.7. Similar results
are obtained for different choices of the threshold.

In Fig. 6 we plot the evolution of the length and thick-
ness of the boundary layer for the entire range of fractal
dimensions, and for a number of iterations in the construc-
tion of the fractal n=4 �top panels� and n=5 �bottom panels�.
We observe that the length of the boundary layer increases as
the frequency increases. Moreover the rate of this increase is
larger for larger values of the fractal dimension, d. The
boundary layer length tends to stabilize to the Euclidean
measure of the fracture surface, and this value increases with
d. This stabilization of the value of the length happens above
some critical frequency threshold, the value of which de-
creases with increasing d. We also note that the critical fre-
quencies for the stabilization of the boundary layer length
increase with the value of n. This can be understood by keep-
ing in mind that the yardstick for the evolution of this length
is the boundary layer thickness, �, represented in the right
hand side panels of Fig. 6; so, the higher the frequency, the
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FIG. 1. Fractal surface profiles considered in this study. Only the bottom
half of the computational cell is represented.

FIG. 2. Typical mesh used for the numerical simulations. Fractal dimension
of the channel, d=1.2714.

TABLE I. Summary of the macroscopic parameters for the various simulations for n=4.

d d� k0 /� he  Ld M Md log10 �̃l log10 �̃M log10 �̃u

1.1646 �0.1646 0.0462 0.7449 0.4187 0.9744 2.1101 0.2349 �0.9023 0.8858 3.8438

1.2002 �0.2002 0.0416 0.7122 0.3530 0.9681 2.6704 0.1879 �1.0435 0.3336 3.5595

1.2359 �0.2357 0.0374 0.6815 0.2982 0.9617 3.3624 0.1489 �1.2152 0.2824 3.4936

1.2715 �0.2714 0.0335 0.6526 0.2523 0.9550 4.2121 0.1169 �1.2658 0.0843 3.2849

1.3071 �0.3069 0.0300 0.6255 0.2140 0.9482 5.2387 0.0910 �1.4271 �0.1251 3.1232

1.3427 �0.3427 0.0268 0.6001 0.1819 0.9411 6.4760 0.0700 �1.4910 �0.1299 3.0020

1.3783 �0.3780 0.0239 0.5767 0.1554 0.9339 7.9178 0.0534 �1.6503 �0.2671 2.8815

1.4139 �0.4137 0.0212 0.5551 0.1330 0.9264 9.6030 0.0402 �1.8443 �0.3926 2.8166

1.4496 �0.4495 0.0188 0.5357 0.1144 0.9188 11.5032 0.0299 �1.9293 �0.3870 2.7321

1.4852 �0.4852 0.0167 0.5191 0.0992 0.9110 13.5533 0.0220 �2.0602 �0.4532 2.6512
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smaller the thickness of the boundary layer, and when this
thickness becomes smaller than the smallest segment length
in the fractal curve, the solid surface which is subject to the
viscous flow dissipation becomes flat for all intents and pur-
poses. The red lines in Fig. 6 indicate the regions over which
it was possible to define a power law scaling for the bound-
ary layer length and thickness. The critical frequency, �̃�,
and the corresponding exponents �L, and ��, respectively,
are reported in Table III. The scaling exponent �L does not
seem to correspond directly to the exponent d�, the gain in
wall length with increasing refinement. The exponent ��

seems to maintain a value close to �1/2 only for n=4,
whereas its values deviate significantly for n=5, showing a
decrease for increasing, d.

We can now plot the numerical results of the dynamic
response and the corresponding models. In Fig. 9, we plot
the frequency dependence of the added mass phase,
��
��� /
�−1�. This representation enhances the differ-
ences between the numerical results and the scaling function.
The blue curve in Fig. 9 represents the model in Eq. �20�, for
a value of  corresponding to the Euclidean length of the
fractal curve, Ln. Such scaling function does not represent a

good model of the dynamic tortuosity for these geometries.
We will discuss the model represented by red lines in the
next section.

V. SCALING MODELS FOR FRACTAL MEDIA

Johnson et al.19 proposed that the characteristic viscous
length for fractal media, , scales as 2 /��2−de, where
1�de�d is an exponent characterizing the dynamic process.
Furthermore, these authors19 conjectured that, for high fre-
quencies, the added mass scales according to the expression


̃���

�

− 1 � 1

2
�1 − i��Me

�̃
��2−de�

, �27�

where Me, is a nondimensional effective scaling parameter.
Our calculations show that, in the case of fractures with frac-
tal pore walls, the added mass does not scale according to the
power-law expression in Eq. �27�. In Fig. 7, we plot the real
and imaginary parts of the added mass as a function of the
nondimensional frequency �in double-logarithmic scale� for
the range of fractal dimensions analyzed in this work. While
the real part follows a power-law best for d�1.3, the imagi-
nary part does not follow the simple scaling in Eq. �27� for
any value of the fractal dimension.

TABLE III. Linear regression coefficients for the Kozeny–Carman relation-
ship k0 /�=c1�1 /180���2 / �1−��2�+c2 for the range of fractal dimensions,
d, considered in this study.

d c1 c2

1.1646 2.6480�10−2 4.0459�10−2

1.2002 3.1389�10−2 3.5982�10−2

1.2359 3.4851�10−2 3.2047�10−2

1.2715 3.6724�10−2 2.8553�10−2

1.3071 3.6941�10−2 2.5447�10−2

1.3427 3.5548�10−2 2.2652�10−2

1.3783 3.2691�10−2 2.0180�10−2

1.4139 2.8508�10−2 1.7936�10−2

1.4496 2.3311�10−2 1.5927�10−2

1.4852 1.7501�10−2 1.4146�10−2

TABLE II. Summary of the macroscopic parameters for the various simulations for n=5.

d d� k0 /� he  Ld M Md log10 �̃l log10 �̃M log10 �̃u

1.1646 �0.1646 0.0461 0.7433 0.3488 0.9744 3.0309 0.2341 �1.0620 �4 5.1885

1.2002 �0.2002 0.0414 0.7101 0.2826 0.9681 4.1507 0.1870 �1.2249 �4 5.0718

1.2359 �0.2357 0.0372 0.6789 0.2293 0.9617 5.6587 0.1481 �1.2278 1.8168 4.0376

1.2715 �0.2714 0.0333 0.6493 0.1863 0.9550 7.6820 0.1161 �1.3006 1.7147 3.9823

1.3071 �0.3069 0.0298 0.6215 0.1518 0.9482 10.3600 0.0902 �1.4749 1.6248 3.9554

1.3427 �0.3427 0.0266 0.5952 0.1237 0.9411 13.9075 0.0694 �1.6573 1.4817 3.9038

1.3783 �0.3780 0.0237 0.5709 0.1014 0.9339 18.4652 0.0528 �1.8443 1.3054 3.8315

1.4139 �0.4137 0.0211 0.5483 0.0832 0.9264 24.3616 0.0397 �1.9134 1.1087 3.6952

1.4496 �0.4495 0.0187 0.5278 0.0686 0.9188 31.7466 0.0295 �2.0219 0.9693 3.5969

1.4852 �0.4852 0.0165 0.5102 0.0570 0.9110 40.6032 0.0217 �2.1908 0.8385 3.5462
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FIG. 3. �Color online� Evolution of the Darcy �static� permeability, k0, as a
function of the porosity, �, at different values of the iteration, n. Linear
regression lines are shown in red and the corresponding coefficients are
listed in Table I.
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Pozrikidis30 proposed that, in fractal media, the absolute
value of the drag force, f���, scales as a function of the
inverse boundary layer thickness, �, i.e.,

�f���� �  1
��̃

�1+d�
, �28�

where d� is the gain in wall length with increasing refine-
ment, and ��1 /��̃. The left hand side panel of Fig. 8 shows
the quantity ��̃−1/2�f��� versus �̃−1/2 on a double-logarithmic
scale. We estimated the value of the slope in the region

where the graph can be approximated by a power law. The
right-hand side of Fig. 8 shows the estimated slopes versus
the value of d� and also displays a quadratic polynomial
relationship between these two quantities. We cannot there-
fore confirm the Pozrikidis’ claim30 that “…results for longi-
tudinal motion provide an explicit example in which the mag-
nitude of the drag force and rate of dissipation diverge
according to the fractal dimension of the surface.”

Instead, as it will be shown below, we find that the drag
force scaling depends explicitly on the value of the fractal
dimension d in a well-constrained range of frequencies.

We start from the observation that there must exist a
range of frequencies, �̃l��̃��̃u, for which the scaling of
the boundary layer thickness does not follow the classical
scaling �13�. Outside of this range of frequencies, the dy-
namic process develops as if the surface was smooth, hence

FIG. 4. �Color� Absolute value and phase of the velocity field V�
�3� as a

function of the frequency, �̃, for a fractured channel with fractal dimension
d=1.2714, and a number of iterations n=5. �a� �̃=0.01, �b� �̃=0.73, �c�
�̃=85.31, and �d� �̃=10 000.

FIG. 5. �Color� Evolution of the boundary layer thickness, �, as a function
of the frequency, �̃, for a fractal surface of dimension d=1.2714. Inset:
scaling of the boundary layer thickness as a function of the nondimensional
frequency. The scaling exponent for this fractal dimension equals �0.45.
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FIG. 6. �Color� Evolution of the length, L���, and thickness, ����, of the
boundary layer for the entire range of fractal dimensions, d, and for a num-
ber of iterations in the construction of the fractal n=4 �top panels� and
n=5 �bottom panels�.
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FIG. 7. �Color� Scaling of the real and imaginary parts of the added mass

��� /
�−1 for the range of fractal dimensions analyzed in this work. The
red lines represent the best fit of Eq. �27� to the data.
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with no exponent corrections. The plots in Fig. 6 show the
evolution of the length and thickness of the boundary layer
as a function of frequency, for n=4 and n=5 �Table IV�.

Therefore, we propose to modify the expression for the z
nondimensional variable in Eq. �23� as

z = g
M���

m2 3i�̃����̃�

, �29�

where

���̃� = 1/2, �̃ � �̃l,

1

��̃u − �̃l�
�

�̃l

�̃u

���̃�d�̃ = 1 −
d

2
, �̃l � �̃ � �̃u, �30�

���̃� = 1/2, �̃ � �̃u,

i.e., we impose the condition that the average value of the
correction in the range of frequencies �̃l��̃��̃u, to be dic-
tated by the value of the fractal dimensions itself, d. The
universal scaling parameter, M, is defined now as a function
of the frequency, M���, as
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FIG. 8. �Color� Left hand side panel: scaling of the drag force f��� absolute
value, with the inverse of the square root of the nondimensional frequency
� /�c. Right hand side panel: comparison with Pozrikidis’ model �Ref. 30�,
slope of �� /�c��−1/2�f��� versus the d�, the gain in wall length with increas-
ing refinement. The best fit to the slope data points is a quadratic polyno-
mial, −1.4117d�2+0.4544d�+0.0423. Pozrikidis’ model �Ref. 30� predicts
that the slope and d� should be equal, whereas present results indicate de-
viations from this prediction.

FIG. 9. �Color� Black dotted line: plot of the added-mass phase �normalized to � /2� for all the fractal dimensions d considered in this study. Blue line: best
fit for the smooth-walls model �Eqs. �20� and �23��. Red line: best fit for the model proposed in this study �Eqs. �20� and �29�–�31��.
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Md =
8k0

d
�

�Ld
2 , �̃ � �̃M ,

�31�

M =
8k0
�

�2 , �̃ � �̃M ,

where the relevant characteristic viscous length for �̃��̃M

is given by the Hausdorff length of fractal curve, Ld. The
two values of M are interpolated by means of a fifth degree
polynomial.

Figure 9 shows the best-fit scaling �red lines� obtained
with the modifications in Eqs. �29�–�31� for the phase of the
added mass. The proposed model captures all the essential
features of the numerical data, with only three free param-
eters: the lower and upper cutoff frequencies, �̃l and �̃u, and
the transition frequency �̃M. �See Tables I and II for a sum-
mary of the best fit parameters.� We conclude that the modi-
fied scaling introduced in Eq. �29�, which introduces explic-
itly the value of fractal dimension of the surface, d, is the key
to understand the frequency dependence of the dynamic re-
sponse of oscillating fluids in porous media.

As a concluding remark, we note that in Eq. �31� the
expression in Md does not have exactly the same functional
form as M as the definition of the characteristic length for
d�1 is not a ratio of volume over surface area. Should the
characteristic viscous length be defined as volume to surface-
area ratio, i.e., equal to 2Vf /Ld, then the pertinent exponent
in Eq. �31� would be 2−d, and not d. Nonetheless, for d=1,
the numerical values and physical dimensions of Ld and ,
do coincide, and the smooth porous media model is recov-
ered as a limiting case. To resolve this apparent inconsis-
tency, various modifications of the expressions in Eqs.
�29�–�31�, aimed at introducing explicitly the characteristic
viscous length as a volume to surface-area ratio, have been
tested. Even though these modified expressions reproduce
the numerical data with an accuracy comparable to the best
fits reproduced in Fig. 9, they invariably require the intro-
duction of an additional free parameter in place of the fractal
dimension exponent in Eq. �29�. In other words, the explicit

appearance of the fractal dimension value disappeared from
these modified models.

We opted, therefore, for a model that reproduces the data
with the minimum number of parameters, in this case Eqs.
�29�–�31�, which invokes only three free parameters. The
resulting apparent paradox will perhaps be resolved through
a careful first-principles analysis of the boundary-layer
scaling near the fractal surface. The classical expression for
the velocity of a fluid oscillating on a flat surface �Rayleigh
problem� is v=v0e−�/����ei��/����−�t�, with v0 as the reference
velocity, and � as a coordinate orthogonal to the oscillating
flow direction. This expression is the solution to the diffusion
equation �v /�t=	�2v /�x2. The profile of the oscillating ve-
locity near a flat boundary is thus the solution to a classical
diffusion problem and is characterized by an exponential de-
cay of the velocity amplitude, i.e., by a distribution with
finite mean and variance.

The fractal surface, however, introduces anomalies in the
diffusion process which cannot be described any longer by
Gaussian distributions of the microscopic quantities,41 but
rather by Levy-type distributions, distributions characterized
by infinite mean and variance. We speculate that the lack of
a characteristic length scale into the fractal surface may be
the equivalent of the lack of a mean value and variance in
Levy-type distributions. The introduction of Levy distribu-
tion in the description of diffusion processes often translates
in the introduction of convolution operators in space and
time.42 As such, we expect that the classical expression for
the characteristic viscous length in Eq. �14�, , motivated by
the solution of a potential flow �diffusion� problem, needs
modification. A more detailed study of the viscous boundary-
layer around fractal surfaces will be the object of a future
study.

VI. CONCLUSIONS

We presented a numerical study on the effect of fractal
wall surfaces on oscillatory fluid flow. Motivated by our in-
terest in fluid flow in fractures, we considered two dimen-

TABLE IV. Exponents of the power law scalings for boundary layer length �L and thickness ��, for n=4 and
n=5. The value of log10 �̃ represents the limit over which a power law scaling could be estimated. These power
law scalings are illustrated in red in Fig. 6.

d d�

n=4 n=5

log10 �̃� �L �� log10 �̃� �L ��

1.1646 �0.1646 3.5862 0.0636 �0.4953 3.5862 0.0494 �0.4724

1.2002 �0.2002 3.3793 0.0829 �0.4940 3.3793 0.0677 �0.4698

1.2359 �0.2357 3.1724 0.1079 �0.4958 3.1724 0.0856 �0.4649

1.2715 �0.2714 2.9655 0.1330 �0.4967 2.9655 0.1016 �0.4569

1.3071 �0.3069 2.7586 0.1584 �0.4962 2.7586 0.1217 �0.4522

1.3427 �0.3427 2.5517 0.1832 �0.4922 2.5517 0.1488 �0.4526

1.3783 �0.3780 2.3448 0.2052 �0.4827 2.3448 0.1757 �0.4491

1.4139 �0.4137 2.1379 0.2274 �0.4711 2.1379 0.2008 �0.4363

1.4496 �0.4495 2.1379 0.2760 �0.4927 2.1379 0.2138 �0.4106

1.4852 �0.4852 2.1379 0.3302 �0.5210 2.1379 0.2189 �0.3788
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sional longitudinal flows in channels whose side-wall geom-
etries are bounded by deterministic fractal curves. For these
geometries, the classical models valid for smooth wall sur-
faces break down. We proposed a modified scaling model for
macroscopic quantities such as the dynamic permeability and
tortuosity. These new models introduce explicitly the value
of the fractal dimension of the surface as an independent
parameter and modify the classical expressions only in the
range of frequencies where the boundary layer explores the
fine structure of the fractal surface. The model proposed in
this study has three free parameters, namely, the lower and
upper cutoff frequencies, �̃l and �̃u, respectively, and a char-
acteristic frequency for the transition to the high-frequency
smooth-surface dynamic regime, �̃M. Our model gives excel-
lent agreement with the numerical simulations. Additional
effort, however, is needed to provide a first-principles deri-
vation of these modified scalings to include explicitly, via
fractional-order derivatives, the anomalous nature of the dif-
fusive processes in the viscous boundary layer. Finally, our
results indicate that the fractal dimension of a fracture sur-
face wall may be assessed by studying the high-frequency
behavior of the added-mass phase signal in laboratory
experiments.
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